Отыскать наименьшее значение функции f(х)=3х^2-12х+1 на промежутке [1;4]
Отыскать меньшее значение функции f(х)=3х^2-12х+1 на интервале [1;4]
Задать свой вопрос2 ответа
Pashka Sustinov
Экстремум функции достигается в точке, где её производная обращается в ноль.
Можно далее проверить знаки справа и слева от точки х=2, но в данном случае мы имеем квадратную параболу с положительным коэффициентом при квадрате х, поэтому они обращена верхушкой вниз и, как следует, имеет минимум.
Таким образом, минимум достигается при х=2 и равен
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
10) Килограмм конфет дороже килограмма печенья на 52 р. За 8
Математика.
Во сколько раз число атомов кислорода в земной коре больше числа
Химия.
Облако тегов