5. Если меж цифрами двузначного числа вписать 1, то приобретенное трехзначное число

5. Если меж цифрами двузначного числа вписать 1, то приобретенное трехзначное число будет в 9 раз больше начального. Отыскать это число.
А. 23;
Б. 54;
В. 26;
Г. 35.

Задать свой вопрос
2 ответа
Пусть х и у - цифры в двузначном числе.
10х + у - двузначное число. 
100х + 10 + у - трехзначное число.

(10х + у) * 9 = 100х + 10 + у
90х - 100 х = 10 + у - 9у
-10х = 10 - 8у
-5х + 4у = 5

Методом подбора х = 3 и у = 5
Проверка:
-5 * 3 + 4 * 5 = 5
-15 + 20 = 5
5 = 5

Ответ: Г) 35
Константин
спасибо
Вот 45*9=405

решение:
двузначное число аб = 10а+б (ну т. е. 31=3*10+1)
трехзначное а0б = 100а+б (301=3*100+1)
100а+б=9*(10а+б)
100а+б=90а+9б
10а=8б
5а=4б
а=0,8б
нам нужно что бы оба числа были целыми, подставляем заместо б все конкретные числа попорядку, получаем что целая пара только б=5, а=4
, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт