Сколько чётных шестизначных чисел, делящихся на 15, сумма цифр которых не
Сколько чётных шестизначных чисел, делящихся на 15
, сумма цифр которых не более 4?
6/Задание 1:
Сколько чётных шестизначных чисел, делящихся на 15, сумма цифр которых не более 4?
РЕШЕНИЕ: Так как число четное, то оно делится на 2. Не считая этого, так как число делится на 15, то оно делится на 3 и на 5. То есть число оканчивается нулем, и сумма его цифр делится на 3.
Явно, что сумма цифр не может приравниваться нулю. Не считая этого, если сумма цифр не более 4, то единственный возможный вариант того, чтобы она делилась на 3 - это сумма 3.
Варианты: 300000, 210000, 201000, 200100, 200010, 120000, 102000, 100200, 100020, 111000, 110100, 110010, 101100, 101010, 100110.
ОТВЕТ: 15 чисел
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.