Две копировальные машины, работая сразу, могут выпонить работу за 12 мин.

Две копировальные машины, работая одновременно, могут выпонить работу за 12 мин. Если будет работать только 1-ая копировальная машина, то она может выполнить всю работу на 10 мин прытче, чем вторая. За сколько минут всю работу может выполнить 2-ая копировальная машина?

Задать свой вопрос
1 ответ

Примем объем работы за "1"-цу. Измеряется в "(Пак.Докум.)" 
V1 и V2 - Скорость(!!) работы 1-й и 2-й машин, V = 1/T , измеряемая в 
"(Пак.Докум.) / (мин)". Тогда из условия задачи получим систему из двух ур-ний: 
1) 1/(V1+V2) = 10 
2) 1/V1 - 1/V2 = 15 
Решая 1) "вытащим" из него V1: 
1)V1 + V2 = 1/10 
V1 = 1/10 - V2 теперь вставив заместо V1 его значение в ур-ние 2) найдем V2: 
2) 1/(1/10 - V2) - 1/V2 = 15 
V2 = 1/15 (Внимание! Второй корень V2 = - 1/10 - отбрасываем! Он отрицательный).Сейчас просто вставим в ур-ние 1) значение V2 = 1/15 и получим разыскиваемую V1: 
1) 1/(V1+1/15) = 10 
15/(15 V1+1) = 10 отсюда: 
V1 = 1/30 
Получили V1 = 1/30 и V2 = 1/15 Но нам ведь нужно Время(!!), а не Скорость. Просто преобразуем: Время T = 1 / V. 
Т1 = 1/V1 = 1/1/30 = 30 (мин) 
Т2 = 1/V2 = 1/1/15 = 15 (мин) 
Ответ: Одна машина сделает работу за 15 мин., Иная - за 30 мин.

, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт