Извещенье на тему:объём параллелепипеда

Извещение на тему:объём параллелепипеда

Задать свой вопрос
1 ответ

Параллелепипед ( с греческого языка плоскость)  призма, основанием которой служит параллелограмм, либо (равносильно) полиэдр, у которого 6 граней и любая из них  параллелограмм.


Различается несколько типов параллелепипедов:

Прямоугольный параллелепипед  это параллелепипед, у которого все грани  прямоугольники.Прямой параллелепипед это параллелепипед, у которого 4 боковые грани прямоугольники.Наклонный параллелепипед  это параллелепипед, боковые грани которого не перпендикулярны основаниям.Ромбоэдр  параллелепипед, грани которого являются одинаковыми ромбами.Куб  параллелепипед, грани которого являются квадратами.

Две грани параллелепипеда, не имеющие общего ребра, именуются противоположными, а имеющие общее ребро  смежными. Две верхушки параллелепипеда, не принадлежащие одной грани, величаются обратными. Отрезок, объединяющий обратные верхушки, величается диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, нарекают его измерениями.

Параллелепипед симметричен условно середины его диагонали.Хоть какой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею напополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею напополам.Противолежащие грани параллелепипеда параллельны и одинаковы.Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Площадь боковой поверхности Sб=Ро*h, где Ро  периметр основания, h  вышина

Площадь полной поверхности Sп=Sб+2Sо, где Sо  площадь основания

Объём V=Sо*h

Прямоугольный параллелепипед[управлять  управлять код]Главная статья: Прямоугольный параллелепипед

Площадь боковой поверхности Sб=2c(a+b), где a, b  стороны основания, c  боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности Sп=2(ab+bc+ac)

Объём V=abc, где a, b, c  измерения прямоугольного параллелепипеда.

Куб

Площадь поверхности: \displaystyle S=6a^2 
Объём: \displaystyle V=a^3, где \displaystyle a  ребро куба.

Случайный параллелепипед

Объём и соотношения в наклонном параллелепипеде нередко определяются с поддержкою векторной алгебры. Объём параллелепипеда равен безусловной величине смешанного произведения трёх векторов, определяемых 3-мя гранями параллелепипеда, исходящими из одной верхушки. Соотношение меж длинами сторон параллелепипеда и углами меж ними даёт утверждение, что определитель "Грама" указанных трёх векторов равен квадрату их смешанного творенья[

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт