Найдите все естественные n, при которых n!+57 квадрат естественного числа
Найдите все естественные n, при которых n!+57 квадрат натурального числа
Задать свой вопрос1 ответ
Лааксо Данил
При n 5, число n! будет оканчиваться на 0. Как следует, при n 5, число n! + 57 будет заканчиваться на 7. А квадраты естественных чисел могут оканчиваться только на 0, 1, 4, 5, 6 и 9. Значит n lt; 5. Положим n = 4. Тогда 4! + 57 = 24 + 57 = 81 = 9^2. Как следует n = 4 нам подходит. При n = 3, 3! +57 = 6 + 57 = 63, при n = 2, 2! +57 = 2 + 57 = 59 и при n = 1, 1! + 57 = 1 + 57 = 58 решений нет.
Ответ: n = 4.
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
10) Килограмм конфет дороже килограмма печенья на 52 р. За 8
Математика.
Во сколько раз число атомов кислорода в земной коре больше числа
Химия.
Облако тегов