Пусть P(x)=2x^4-x^3+3x^2-1. Существует ли многочлен, при делении на который P(x) даёт

Пусть P(x)=2x^4-x^3+3x^2-1. Существует ли многочлен, при делении на который P(x) даёт в частном 2x^2-3x+2, а в остатке 4x+3?

Задать свой вопрос
1 ответ

Ответ:

Не существует.

Пошаговое разъяснение:

1) Используя аксиому деления с остатком: P(X)=Q(X)*C(X)+R(X), Q(X) - делитель, C(X)-неполное приватное, R(X)- остаток.

2) Т.к. степень приватного 2, а ступень P(X)=4, ступень делителя 2. Отсюда:

Q(X)=aX^2+bX+c.

2) P(X)= (aX^2+bX+C)(2X^2-3X^2+2)+4X+3

P(X)=2aX^4+(2b+3a)X^3+(2c-3b+2a)X^2-(3c-2b)x+2c (сходу раскрываем скобки и приводим сходственные)

2X^2-X^3+3X-1=2aX^4+(2b+3a)X^3+(2c-3b+2a)X^2-(3c-2b)x+2c

2a=2                                        a=1

2b+3a=-1                                  b=-2

2c-3b+2a=3                             c= 2.5

3c-2b=0                                    c=1. 1/3

2c=-1                                         c=1/2

Значений с три, а такое невозможно


, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт