из цветной бумаги нюша вырезала пятиугольники шестиугольники.всего у их 27 вершин.сколько
Из цветной бумаги нюша вырезала пятиугольники шестиугольники.всего у их 27 вершин.сколько шестиугольников вырезала нюш
Задать свой вопрос2 ответа
Карина
Пятиугольников - х, вершин - 5х;
шестиугольников -у, вершин 6у;
хgt;0;
ygt;0;
5х+6у=27
х+у=N (натуральное целое положительное число);
y=N-x;
5x+6(N-x)=27
x=6N-27 gt;0;
6Ngt;27;
Ngt;4,5
избираем N=5, тогда х=6*5-27=3 - пятиугольника;
у=(27-5*3)/6=2 шестиугольника.
шестиугольников -у, вершин 6у;
хgt;0;
ygt;0;
5х+6у=27
х+у=N (натуральное целое положительное число);
y=N-x;
5x+6(N-x)=27
x=6N-27 gt;0;
6Ngt;27;
Ngt;4,5
избираем N=5, тогда х=6*5-27=3 - пятиугольника;
у=(27-5*3)/6=2 шестиугольника.
Сладкина
Оксана
супер
Илюшка Бобриевич
там в принципе можно дополнить, чтоб N было совершенно точно определено.
Антон Кожельников
я решала обычным подбором чисел
Михон Евланичев
в решении условно х N>4.5, в решении условно у N<5.4. 4,5
Цепакин
Борис
Решение подбором тоже вариант, но как-то "некомильфо"...)))
Анна Мазик
Только мы здесь все такие разумные, уравнения живописуем, неравенства решаем, вот только уровень задания, если веровать автору, 1-4? Есть ли мудрый метод решения для началки, не считая как подбор?
Надежда Калабушева
окончательно нет! просто это задание было предложено на форуме как занимательное. конкретно потому я постарался его конкретно решить, а не выбирать.
Фигаровский
Геннадий
нууууу вот я просто подбором
Любовь Коретникова
да да я предложила,как занимательное.... потому и надо решить. Хорошо...а попросит юзер.объясним)))))))))))
Арина
Пусть всего Нюша вырезала N многоугольников, из их X пятиугольников и Y шестиугольников. Тогда всего у вырезанных ею многоугольников 5X + 6Y = 27 вершин.
Предположим, что все N многоугольников были бы пятиугольниками. Тогда общее количество углов обязано было бы уменьшиться, и отсюда
5N lt; 27 lt; 30
N lt; 30/5
N lt; 6
Сейчас рассмотрим оборотную ситуацию: все многоугольники - шестиугольники. В этом случае общее число углов возрастёт:
6N gt; 27 gt; 24
N gt; 24/6
N gt; 4
Итак, 4 lt; N lt; 6 и N - естественное число. Тогда N = 5. Найдем значения X и Y, для этого перепишем уравнение немножко в другом виде:
5X + 5Y + Y = 27
5(X + Y) + Y = 27 - но ведь X + Y = N = 5!
5 * 5 + Y = 27
25 + Y = 27
Y = 27 - 25 = 2
В конце концов,
X = N - Y = 5 - 2 = 3
Ответ. Нюша вырезала 3 пятиугольника и 2 шестиугольника.
Предположим, что все N многоугольников были бы пятиугольниками. Тогда общее количество углов обязано было бы уменьшиться, и отсюда
5N lt; 27 lt; 30
N lt; 30/5
N lt; 6
Сейчас рассмотрим оборотную ситуацию: все многоугольники - шестиугольники. В этом случае общее число углов возрастёт:
6N gt; 27 gt; 24
N gt; 24/6
N gt; 4
Итак, 4 lt; N lt; 6 и N - естественное число. Тогда N = 5. Найдем значения X и Y, для этого перепишем уравнение немножко в другом виде:
5X + 5Y + Y = 27
5(X + Y) + Y = 27 - но ведь X + Y = N = 5!
5 * 5 + Y = 27
25 + Y = 27
Y = 27 - 25 = 2
В конце концов,
X = N - Y = 5 - 2 = 3
Ответ. Нюша вырезала 3 пятиугольника и 2 шестиугольника.
Инна Саландаева
Сейчас в моде "способ неправильной догадки". Пусть у нас 3 пятиугольника и 3 шестиугольника. Тогда у их было бы 5*3+6*3=33 верхушки. А их 33-27=6, на 6 вершин МЕНЬШЕ, т.е как раз на ОДИН шестиугольник! Означает, их не 6, а 5. Ответ: 3 пятиугольника, 2 шестиугольника!
Арнапов
Леха
Класс!!! Но это тот-же подбор, только облаченный по новейшей моде.
Большанова
Варвара
Либо такая заранее "фальшивая догадка": Нюша вырезала одни 5-тиугольники. Тогда: 27:5=5(2остаток). Это могут быть только излишние верхушки, принадлежащие 6-тиугольникам. Означает, у нас 2 пятиугольника являются шестиугольниками! А пятиугольников: 5-2=3.
Витька Кришкевич
нуууууу ,ребенку на целый класс хватит решений
Маринка Нижеметова
Всегда решал такие задачки подбором, благо в школьных образцах перебор очень маленькой. Так и здесь можно увидеть,что больше 4 шестиугольников вырезано быть не может, и разобрать 5 случаев, когда вырезано 0, 1, 2, 3, 4 шестиугольника. Каждый раз число пятиугольников определяется совершенно точно и если оно оказывается целым (скажем, (27-12)/5=3), то мы получаем пару решений в этом случае 3 пятиугольника и 2 шестиугольника. Диофантовы уравнения это хорошо, но для 1-4 классов лишне трудно.
Вера Деребеева
Повторюсь. Задание решал лицезрев его на форуме в разделе интересные задачки. Именно по этому решал, а не выбирал. А мое решение так никто и не принял...(((
Светлана Мигаль
Правильное решение уровня 1-4 класса здесь в комментариях от Helenaal и Dmital. Другие решения уровня выше 6 класса
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов