В прямоугольном треугольнике АВС длина катета АВ равна 6, а длина





В прямоугольном треугольнике АВС длина катета АВ одинакова 6, а длина катета ВС
одинакова 8. Точка D разделяет гипотенузу АС напополам. Найти расстояние меж центрами
окружностей, вписанных в треугольник ABD и в треугольник BCD.




Задать свой вопрос
1 ответ
Сделаем набросок треугольника АВС.
Так как АВ и ВС - катеты, угол В=90
Найдем гипотенузу АС по т. Пифагора (или просто учтем, что данный треугольник - египетский с отношением сторон 3:4:5).
АС=10
Соединим В и Д. ВД - медиана прямоугольного треугольника и потому одинакова половине гипотенузы. 
ВД=5
Треугольник ВАД - равнобедренный.
ВD=АD 
Из центра окружности О проведем к точке касания с АС отрезок ОТ, к точке касания с АВ отрезок ОР.
АР=РВ: треугольник равнобедренный и центр окружности О лежит на биссектрисе ДР ( она же вышина и медиана)
По свойству отрезков касательных к окружности из одной точки 
 АТ=АР=АВ:2=3
В треугольнике ВDС из центра О1 проведем отрезки к точкам касания О1Н и О1Е
Треугольник ВDС - равнобедренный и центр окружности О1 лежит на биссектрисе DН ( она же вышина и медиана)
ВН=НС=ВС:2=4
По свойству отрезков касательных к окружности из одной точки 
НС=ЕС=4
ТЕ=АС-АТ-СЕ=10-3-4=3
По формуле радиуса вписанной в равнобедренный треугольник окружности
r=(b:2)*[(2а-b):(2a+b)] 
найдем радиусы ОТ и ЕО1
ОТ=3/2
ЕО1=4/3
Четырехугольник ОТЕО1 -  прямоугольная трапеция с основаниями ОТ и О1Е и наименьшей боковой стороной ТЕ
Расстояние меж центрами окружностей, вписанных в треугольник ABD и в треугольник BCD - большая боковая сторона этой трапеции. 
ТЕ=3
ЕО1=4/3
ТМ=3/2
Из О1 опустим высоту О1М. 
Треугольник О1МО - прямоугольный. 
МО=ТО-ЕО1=1/6
По т. Пифагора 
ОО1=(ОМ+МО1)=(9+1/36)=(325/36)=(513):6
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт