Помогите решить задачку

Помогите решить задачу

Задать свой вопрос
1 ответ
Ответ 4.

Решение: Интегрируя обе доли, получаем arctg y = lnx+1+lnC (или просто С).

Объяснение: Если заменить у на tg(u)=sin(u)/cos(u), то dy=[cos(u)*cos(u)-sin(u)*(-sin(u))]/cos^2(u) * du=[cos^2(u)+sin^2(u)]/cos^2(u) * du =1/cos^2(u) * du , и потом подставить в интеграл, то подынтегральное выражение воспримет вид: dy/(1+y^2)=1/(1+sin^2(u)/cos^2(u))*1/cos^2(u)*du=1/(cos^2(u)/cos^2(u)+sin^2(u)/cos^2(u))*1/cos^2(u)*du=1/1/cos^2(u)*1/cos^2(u)*du=cos^2(u)/cos^2(u)*du=du, интегрируя которое, получаем u+C, то есть, arctg y+C. В правой доли же просто берём логарифмический интеграл.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт