ХэлпПомогите решить производнуюНужно отыскать производную второго порядкаy=2x*sin(3x^2-1)Как

Хэлп
Помогите решить производную
Необходимо отыскать производную второго порядка
y=2x*sin(3x^2-1)
Как это решить? Обясните, пожалуйста, с доскональным решением. Буду благодарен

Задать свой вопрос
1 ответ

[C]'_x=0\\\\\ [C*f(x)]'_x=C*[f(x)]'_x=C*f'(x)\\\\\ [f(x)+g(x)]'_x=[f(x)]'+[g(x)]'=f'(x)+g'(x)\\\\\ [g(x)*f(x)]'_x=[g(x)]'_x*f(x)+g(x)*[f(x)]'_x=g'(x)*f(x)+g(x)*f'(x)\\\\\ [g(f(x)]'=g'_f*f'_x\\\\


g(f(x))=\sin(3x^2-1)\\\\\ [\sin(3x^2-1)]'=\cos(3x^2-1)*[3*x^2-1]'=\cos(3x^2-1)*[(3*x^2)'-(1)']=\\\\=\cos(3x^2-1)*[3*(x^2)'-0]=\cos(3x^2-1)*[3*(2*x)-0]=\\\\y'_x=[2*x*\sin(3x^2-1)]'=2*[x*\sin(3x^2-1)]'=\\\\=2*([x]'*\sin(3x^2-1)+x*[\sin(3x^2-1)]')=\\\\=2*(1*\sin(3x^2-1)+x*6x\cos(3x^2-1))=\\\\=2\sin(3x^2-1)+12x^2\cos(3x^2-1)

y''=(y')'=[2\sin(3x^2-1)+12x^2\cos(3x^2-1)]'=\\\\=[2\sin(3x^2-1)]'+[12x^2\cos(3x^2-1)]'=\\\\=2*[\sin(3x^2-1)]'+12*[x^2\cos(3x^2-1)]'=\\\\=2*6x\cos(3x^2-1)+12*([x^2]'*\cos(3x^2-1)+x^2*[\cos(3x^2-1)]')=\\\\=12x\cos(3x^2-1)+12*(2x\cos(3x^2-1)+x^2*(-\sin(3x^2-1))*[3x^2-1]')=\\\\=12x\cos(3x^2-1)+12*(2x\cos(3x^2-1)-x^2*\sin(3x^2-1)*6x)=\\\\=12x\cos(3x^2-1)+24x\cos(3x^2-1)-72x^3\sin(3x^2-1)=\\\\=36\cos(3x^2-1)-72x^3\sin(3x^2-1).

Олег
спасибо. можете еще раз объяснить? получается мы поначалу отыскиваем производную тут sin(3x^2-1) и тут будет косинус. а вот 2 строка снизу как тут вышло 6x сos. здесь мы просто подставили то, что отыскали в самом начале?
Третьяк Софья
да поставили, если посмотрите формулы взятия производных, и собственный пример, то увидете, что необходимо будет в вашем образце необходимо будет считать производную от sin(3x^2-1), вот её сначала раздельно и посчитал, а потом подставил, можно было раздельно и не считать
Павел Мациалек
подставили
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт