найдите величайшие значение функции в отрезке [-п/2;3п/4] f(х)=sin^2x- sinx +5
Найдите наивеличайшие значение функции в отрезке [-п/2;3п/4] f(х)=sin^2x- sinx +5
Задать свой вопросЗначения на концах отрезка:
f(-pi/2) = sin^2(-pi/2) - sin(-pi/2) + 5 = 1 + 1 + 5 = 7
f(3pi/4) = sin^2(3pi/4) - sin(3pi/4) + 5 = (-1/2)^2 - (-1/2) + 5 =
= 1/2 + 2/2 + 5 = 1/2 + 2/2 + 10/2 = (11 + 2)/2 lt; 7
Найдем экстремумы:
f ' (x) = 2sin x*cos x - cos x = cos x*(2sin x - 1) = 0
1) cos x = 0; x = pi/2 + pi*k; В просвет попадают корешки:
x1 = -pi/2; f(-pi/2) = sin^2(-pi/2) - sin(-pi/2) + 5 = 1 + 1 + 5 = 7 - максимум
x2 = pi/2; f(pi/2) = sin^2(pi/2) - sin(pi/2) + 5 = 1 - 1 + 5 = 5
2) 2sin x - 1 = 0
sin x = 1/2
x = pi/6 + 2pi*k. В промежуток попадает корень:
x3 = pi/6; f(pi/6) = sin^2(pi/6) - sin(pi/6) + 5 = 1/4 - 1/2 + 5 = 4 3/4
x = 5pi/6 + 2pi*k. В промежуток не попадает ни один корень.
Ответ: f(-pi/2) = 7
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.