Ровная y=11x+13 является касательной к графику функций y=-2x^2+3x+5 . Найдите абсциссу

Ровная y=11x+13 является касательной к графику функций y=-2x^2+3x+5 . Найдите абсциссу точки касания

Задать свой вопрос
1 ответ
Во-первых, если данные графики дотрагиваются, то у их есть общая (разыскиваемая) точка, которую можно отыскать из системы
y=11x+13, и y= -2x^2 + 3x + 5.
11x + 13 = -2x^2 + 3x +5,
2x^2 + x*(11-3) + 13-5 = 0;
2x^2 + 8x + 8 = 0;
x^2 + 4x + 4 = 0;
x^2 + 2x*2 + 2^2 = 0;
(x+2)^2 = 0;
x+2 = 0;
x= -2.
Во-вторых, если данные графики функций дотрагиваются, то в точке касания будет наблюдаться совпадение тангенса угла наклона касательных, то есть касательные к графикам функций в разыскиваемой точке совпадут, что означает совпадут значения производных функций в разыскиваемой точке.
y1' = (11x+13)' = 11,
y2' = (-2x^2 + 3x + 5)' = (-2)*2x + 3,
11 = (-2)*2x + 3;
11 = -4x + 3;
4x = 3-11 = -8;
x = -8/4 = -2.
Ответ. x=-2.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт