Найдите производную:[tex] displaystyle y= frac3^x2^x+5^x[/tex]

Найдите производную:
 \displaystyle y= \frac3^x2^x+5^x

Задать свой вопрос
2 ответа

 y'=(\frac3^x2^x+5^x)'=\frac(3^x)'*(2^x+5^x)-3^x*(2^x+5^x)'(2^x+5^x)^2=\frac3^x*ln3*(2^x+5^x)-3^x*(2^x*ln2+5^x*ln5)(2^x+5^x)^2=\frac3^x(2^x*ln3+5^x*ln3-2^x*ln2-5^x*ln5)(2^x+5^x)^2 =\frac3^x(2^x*ln1,5+5^x*ln0,6)(2^x+5^x)^2                                         =\frac6^x*ln1,5+15^x*ln0,6(2^x+5^x)^2

Иванова-Францевич Павел
Максимально понятный и доходчивый ответ. Спасибо Вам)
Ева Обиход
Всегда рада помочь
Y' =
 \frac 3^x ln3 \times ( 2^x  +  5^x ) -  3^x ( 2^x ln2 +  5^xln5)  ( 2^x  +  5^x )^2   =  \frac 3^x 2^xln3 +  3^x 5^x  ln3 -  3^x 2^x   ln2 -  3^x  5^xln5   ( 2^x  +  5^x )^2   =  \frac 3^x  2^x(ln3 - ln2)  +  3^x  5^x(ln3 - ln5)  ( 2^x  +  5^x )^2   =  \frac 6^xln \frac32  +  15^x  ln \frac35  ( 2^x  +  5^x )^2
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт