Камень бросили ввысь. Его поймали в точке, выше точки броска (есть
Камень бросили ввысь. Его словили в точке, выше точки броска (есть рисунок). Можно ли пройденный путь камня вычислить по формуле vt-(gt)/2? Если да, то почему, а если нет, то как (вычислить)?
Задать свой вопросДля того, чтоб осознать, как вычислять, поглядим на эту замечательную зависимость расстояния от времени.
итак - ускорение у нас непрерывно, причем непрерывно отрицательно.
формула: а=const, alt;0. Или, как оно принято(дальше я буду считать, что ускорение - величина модульная, и ставить перед ней минус.
-а=const
Функция ускорения есть ничто иное, как произволная от функции скорости:
v = v0 + (-a)t;
функция скорости - производная от ф-ии расстояния:
s = v0t +(-a)t^2 / 2
Не - все нормально! Чесслово! Можно этой формулой воспользоваться. При фактически таких значениях t, когда at = v0, мы имеем замечтательный экстремум функции, который величается "максимум. В этой точке расстояние приобретает свое максимальное значение, далее функция начинает убывать - ибо данная зависимость S от t - полностью для себя стандартный крадратный многочлен, причем с отрицательным коэффициентом перед t^2 (мы в самом начале анализа условились). А значит мы имеем дело с графиком очевидной параболы стиля "рожки вниз".
и значения у функции такого расстояния - могут быть даже отрицательные. Не стоит пугаться! Ведь камень - он таковой. Он мог ведь из вредности и в яму упасть. А функция - нам все посчитала! Так что - пользуйтесь на здоровье!
...Только эта функция нам расстояние посчитала.
а вот путь считать нужно по иному. Там последующий алгоритм:
1) приравниваем v0=a * tmax =gt; tmax = v0/a
2) сравниваем t и tmax
3) если tmax gt; t,
L = S = v0t +(-a)t^2 / 2
если tmax lt; t (наш случай)
L = 2*(v0*v0/a+(-a)(v0/a)^2 / 2) -( v0t +(-a)t^2 / 2)
L= v0^2/a - v0t + (at^2)/2
Ответ:
L= (v0)^2/a - v0t + (at^2)/2
и, соответственно, а = g
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.