Дан квадрат ABCD, верхушки  A и  D которого лежат на некоторой

Дан квадрат ABCD, верхушки A и D которого лежат на некой окружности, а две другие - на касательной к этой окружности. Через центр окружности проведена ровная, параллельная AD. В каком отношении (считая от верхушки A) эта ровная разделяет сторону AB.
Ответ обязан быть 3:5

Задать свой вопрос
1 ответ
Обозначим точку пересечения этой прямой и стороны квадрата АВ как Т
АТ+ТВ = АВ
ТВ = R ---радиус окружности
выразим АТ через радиус...
из равнобедренного треугольника АОD, где AD = AB = AT+R
вышина этого треугольника, проведенная к основанию, = АТ
из получившегося прямоугольного треугольника по т.Пифагора
(AD/2)^2 + AT^2 = R^2
AD^2 + 4AT^2 = 4R^2
(AT+R)^2 + 4AT^2 = 4R^2
AT^2 + 2AT*R + R^2 + 4AT^2 - 4R^2 = 0
5AT^2 + 2AT*R - 3R^2 = 0
D = (2R)^2 - 4*5*(-3R^2) = 4R^2 + 60R^2 = (8R)^2
AT = (-2R + 8R)/10
---отрицательный корень не разглядываем (не имеет смысла...)
AT = 6R/10 = 3R/5
искомое отношение: AT/TB = (3R/5) / R = 3/5
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт