В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: AB = 4, BC
В прямоугольном параллелепипеде ABCDA1B1C1D1 знамениты длины рёбер: AB = 4, BC = 3, AA1 = 2. Точки P и Q середины рёбер A1B1 и CC1 соответственно. Плоскость APQ пересекает ребро B1C1 в точке U.
Обоснуйте, что B1U : UC1 = 2 : 1 С Подмогою КООРДИНАТНОГО Способа
Пусть A - начало координат.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости APQ - проходит через начало координат .
ax+by+cz=0
Подставляем координаты точек
P (2;0;2)
2a+2c=0
Q(4;3;1)
4a+3b+c=0
Пусть a= 1 , тогда с = -1 b = -1
Уравнение плоскости
x-y-z=0
Нам необходимо доказать что точка
U (4;2;2) принадлежит этой плоскости .
Подставляем координаты в уравнение
4-2-2=0 - принадлежит.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.