Один из углов прямоугольного треугольника равен 60 градусов,а сумма гипотенузы и

Один из углов прямоугольного треугольника равен 60 градусов,а сумма гипотенузы и наименьшего катета одинакова 42 см. Найдите гипотенузу.

Задать свой вопрос
1 ответ
АВС - прямоугольный треугольник, угол В = 90 градусов, угол С = 60 градусов, АВ и ВС - катеты, АС - гипотенуза.
угол А + угол В + угол С = 180 градусов (по аксиоме о сумме углов треугольника);
угол А + 90 + 60 = 180;
угол А = 180 - 150;
угол А = 30 градусов.
Против угла 30 градусов лежит катет, который равен половине гипотенузы, тогда:
ВС = АС/2.
Сумма гипотенузы и наименьшего катета равна 42. Меньшим катетом в АВС является катет ВС, поэтому что на него опирается наименьший угол А, потому:
АС + ВС = 42 см.
Получаем систему уравнений:
ВС = АС/2;
АС + ВС = 42.
Подставим 1-ое выражение во 2-ое заместо ВС и найдем длину гипотенузы АС:
АС + АС/2 = 42;
(2АС + АС) / 2 = 42;
3АС / 2 = 42;
3АС = 84;
АС = 84 / 3;
АС = 28 см.
Ответ: АС = 28 см.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт