Средняя линия трапеции делится ее диагональю на доли, одинаковые 2 см.
Средняя линия трапеции делится ее диагональю на доли, одинаковые 2 см. и 5 см. Вычислите углы трапеции, если любая из ее боковых сторон равна 6 см.
Задать свой вопросДля решения осмотрим рисунок (https://bit.ly/2yYJfxp).
Так как отрезок КР средняя линия трапеции, то отрезки КО и РО есть средние полосы треугольников АВС и АСД.
Так как длина средней полосы треугольника равна половине длины параллельной ей основания, то
ВС = 2 * КО = 2 * 2 = 4 см, АД = 2 * РО = 2 * 5 = 10 см.
Проведем вышину ВН трапеции.
Так как трапеция равнобедренная, то отрезок АН равен полуразности длин оснований трапеции.
АН = (АД- ВС) / 2 = (10 - 4) / 2 = 3 см.
Из прямоугольного треугольника АВН определим величину угла АВН.
SinАВН = АН / АВ = 3 / 6 = 1/2.
Угол АВН = arcsin(1/2) = 300.
Тогда угол АВС = ВСД = АВН + 90 = 30 + 90 = 1200.
Угол ВАД = СДА = 180 АВН ВНА = 180 30 90 = 600.
Ответ: Углы трапеции равны 600, 1200, 1200, 600.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.