Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD

Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K. Найдите KC, если BC = 4, а AK = 6.

Задать свой вопрос
1 ответ

Для решения осмотрим набросок (https://bit.ly/2EvGWr9).

Осмотрим треугольники ВКС и АВС. Угол С у треугольников общий. Угол КВС = ДВС. Угол ДВС опирается на хорду ДС и угол ДАС опирается на хорду ВС, тогда угол ДВС = ДАС = КВС. Так как ВАС = ДАС по условию, то угол ВАС = КВС, а треугольники сходственны по двум углам.

Пусть отрезок КС = Х см, тогда АС = (Х + 6) см.

Тогда ВС / АС = КС / ВС.

4 / (Х + 6) = Х / 4.

16 = Х2 + 6 * Х.

Х2 + 6 * Х 16 = 0.

Решив квадратное уравнение, получим Х = 2.

КС = 2 см.

Ответ: Отрезок КМ равен 2 см.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт