в ромбе ABCD диагонали пересекаются в точке О, АВ=13см, BD=10см. найдите

в ромбе ABCD диагонали пересекаются в точке О, АВ=13см, BD=10см. найдите АС и площадь ABCD. решить надо с помощью теоремы Пифагора

Задать свой вопрос
1 ответ

Для решения осмотрим набросок (https://bit.ly/2SRhr9o).

Диагонали ромба в точке их скрещения делятся пополам и пересекаются под прямым углом.

Тогда ВО = ДО = ВД / 2 = 10 / 2 = 5 см.

В прямоугольном треугольнике АВО, по аксиоме Пифагора, определим длину катета АО.

АО2 = АВ2 ВО2 = 132 52 = 169 25 = 144.

АО = 12 см.

Тогда АС = 2 * АО = 2 * 12 = 24 см.

Определим площадь ромба.

Sавсд = АС * ВД / 2 = 24 * 10 / 2 = 120 см2.

Ответ: Длина АС одинакова 24 см, площадь ромба равна 120 см2.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт