В правильной треугольной призме сторона основания 12 см, вышина 17см. Найти

В правильной треугольной призме сторона основания 12 см, вышина 17см. Найти площадь боковой и полной поверхности.

Задать свой вопрос
1 ответ

Для решения осмотрим набросок (https://bit.ly/2I6lcTn).

Так как призма верная, то в ее основании лежит равносторонний треугольник АВС.

Построим вышину АН, которая в равностороннем треугольнике так же будет и медиана. Тогда ВН = СН = ВС / 2 = ВС / 2 = 12 / 2 = 6 см.

В прямоугольном треугольнике АВН, по аксиоме Пифагора, АН2 = АВ2 ВН2 = 144 36 = 108.

АН = 6 * 3 см.

Определим площадь основания. Sавс = ВС * АН / 2 = 12 * 6 * 3 / 2 = 36 * 3 см2.

Периметр треугольника АВС равен: Равс = 3 * АВ = 3 * 12 = 36 см, тогда Sбок = Равс * СС1 = 36 * 17 = 612 см2.

Sпов = 2 * Sосн + Sбок = 2 * 36 * 3 + 612 = 36 * (17 + 2 * 3) см2.

Ответ: Площадь боковой поверхности одинакова 612 см2, полная площадь равна 36 * (17 + 2 * 3) см2.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт