Помогите пожалуйста решить пределы. Очень надо 1) lim(x стремится к 2)
Помогите пожалуйста решить пределы. Очень надобно
1) lim(x устремляется к 2) (3x^2-8x+15)/(x^2-25)
2) lim (x стремится к бесконечности) (2x^3-3x^3+1)/(x^3+4x^2+2x)
3)lim (x устремляется к -1) 3/(x^3+1) - 1/(x+1)
1 ответ
Степан
1) x-gt;2; Неопределённости нет, просто подставляем
lim ((3x^2-8x+15)/(x^2-25))=(3*2^2 - 8*2 + 15)/(2^2 - 25) = (12-16+15)/(4-25) = 13/21
2) x-gt;оо; Неопределённость оо/оо, обходится разделением числителя и знаменателя на икс в самой высокой ступени, тут это x^3.
Примечание. Изготовлено для числителя (2x^3 - 3x^2 +1), быстрее всего, во втором члене икс в квадрате а не в кубе.
lim (2x^3 - 3x^2 + 1)/(x^3 + 4x^2 + 2x)= lim (2 - 3/x + 1/x^3)/(1 + 4/x + 2/x^2) = 2/1 = 1
Т.к. выражения типа 3/х; 1/x^3 и т.п. при x-gt;оо дают в пределе ноль
3) x-gt;(-1); Неопределённость оо - оо
Для начала приведём к общему знаменателю, затем сходственные:
3/(x^3+1) - 1/(x+1) = (-x^3+3x+2)/(x^4+x^3+x+1)
Пробуем подставить в полученное выражение x=-1, получаем неопределённость 0/0. Избавиться подсобляет правило Лопиталя, для чего по отдельности берётся производная числителя и знаменателя:
lim (-x^3+3x+2)/(x^4+x^3+x+1) = lim (-3x^2+3)/(4x^3+3x^2+1)
Неопределённость 0/0 не пропала, применяем управляло Лопиталя вторично:
lim (-3x^2+3)/(4x^3+3x^2+1) = lim (-6x)/(12x^2+6x)
Сейчас можно подставлять x=-1
lim (-6x)/(12x^2+6x) = (-6)*(-1)/(12*(-1)^2 + 6*(-1)) = 6/(12-6)=1
lim ((3x^2-8x+15)/(x^2-25))=(3*2^2 - 8*2 + 15)/(2^2 - 25) = (12-16+15)/(4-25) = 13/21
2) x-gt;оо; Неопределённость оо/оо, обходится разделением числителя и знаменателя на икс в самой высокой ступени, тут это x^3.
Примечание. Изготовлено для числителя (2x^3 - 3x^2 +1), быстрее всего, во втором члене икс в квадрате а не в кубе.
lim (2x^3 - 3x^2 + 1)/(x^3 + 4x^2 + 2x)= lim (2 - 3/x + 1/x^3)/(1 + 4/x + 2/x^2) = 2/1 = 1
Т.к. выражения типа 3/х; 1/x^3 и т.п. при x-gt;оо дают в пределе ноль
3) x-gt;(-1); Неопределённость оо - оо
Для начала приведём к общему знаменателю, затем сходственные:
3/(x^3+1) - 1/(x+1) = (-x^3+3x+2)/(x^4+x^3+x+1)
Пробуем подставить в полученное выражение x=-1, получаем неопределённость 0/0. Избавиться подсобляет правило Лопиталя, для чего по отдельности берётся производная числителя и знаменателя:
lim (-x^3+3x+2)/(x^4+x^3+x+1) = lim (-3x^2+3)/(4x^3+3x^2+1)
Неопределённость 0/0 не пропала, применяем управляло Лопиталя вторично:
lim (-3x^2+3)/(4x^3+3x^2+1) = lim (-6x)/(12x^2+6x)
Сейчас можно подставлять x=-1
lim (-6x)/(12x^2+6x) = (-6)*(-1)/(12*(-1)^2 + 6*(-1)) = 6/(12-6)=1
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
Облако тегов