составить уравнение касательной к кривой f(x)=1+2x^2-x^2 в точке с абсциссой x0=1

Составить уравнение касательной к кривой f(x)=1+2x^2-x^2 в точке с абсциссой x0=1

Задать свой вопрос
1 ответ
Общий вид уравнении касательной имеет вид:
       y=f'(x_0)(x-x_0)+f(x_0)

1. Вычислим производную функции
f'(x)=(1+2x^2-x^2)'=(1+x^2)'=2x

2. найдем значение производной функции в точке x_0=1
f'(1)=2\cdot 1=2

3. Найдем значение функции в точке x_0=1
f(1)=1+1^2=2

Искомая касательная: y=2(x-1)+2=2x-2+2=2x
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт