Уравнение логарифмическое(

Уравнение логарифмическое(

Задать свой вопрос
1 ответ

lg(3^x - 2^(4-x) ) = 2 + 0,25*lg(16) - 0,5x*lg(4)
Нужно правую часть представить как один логарифм
2 = lg(100)
0,25*lg(16) = 0,25*lg(2^4) = 0,25*4*lg(2) = lg(2)
0,5x*lg(4) = 0,5x*lg(2^2) = 0,5x*2lg(2) = x*lg(2) = lg(2^x)
Подставляем
lg(3^x - 2^(4-x) ) = lg(100) + lg(2) - lg(2^x) = lg(200*2^(-x) )
Логарифмы одинаковы, то и выражения под ними тоже одинаковы.
3^x - 2^4*2^(-x) = 200*2^(-x)
3^x = (200+16)*2^(-x)
Умножаем все на 2^x
6^x = 216 = 6^3
x = 3

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт