Ответ:
Решение
а) 0,5x-4+(8-x)^4 = 0
0,5x-4 = -(8-x)^4
Так как значение модуля I0,5x-4I и выражения (8-x)^4 всегда больше или одинаковы нулю для любых х на всей числовой прямой, то уравнения будет иметь решение при равенстве нулю правой и левой доли уравнения сразу
0,5x-4 = 0
8-x=0
x = 8
Ответ: 8
б) 8/(2+IxI) = 4 + x^2
Если хlt;0 то IxI = -x
8/(2-x) =4+x^2
(8-(4+x^2)(2-x))/(2-x) =0
(8 - 8 + x^3 -2x^2 + 4x)/(2-x) =0
x(x^2-2x+4)/(2-x) =0
x(2-x)^2/(2-x)=0
x(2-x) =0
x=0 2-x = 0 либо х = 2(не подходит так как мы приняли что хlt;0)
Если хgt;0 то IxI = x
8/(2+x) =4+x^2
(8-(4+x^2)(2+x))/(2+x) =0
(8 - 8 - x^3 -2x^2 - 4x)/(2+x) =0
x(x^2+2x+4)/(x+2) =0
x(x+2)^2/(2+x)=0
x(x+2) =0
x=0 x+2 = 0 либо х = -2(не подходит так как мы приняли что хgt;0)
Потому решением уравнения будет х=0
Проверка
8/(2+IxI) = 8/(2+0) = 4
4 + x^2 =4+ 0 =4
Ответ:0
Подробнее - на Znanija.com - znanija.com/task/32029743readmore
Пошаговое объяснение:
Ответ:
Решение
а) 0,5x-4+(8-x)^4 = 0
0,5x-4 = -(8-x)^4
Поскольку значение модуля I0,5x-4I и выражения (8-x)^4 всегда больше либо одинаковы нулю для всех х на всей числовой прямой, то уравнения будет иметь решение при равенстве нулю правой и левой части уравнения сразу
0,5x-4 = 0
8-x=0
x = 8
Ответ: 8
б) 8/(2+IxI) = 4 + x^2
Если хlt;0 то IxI = -x
8/(2-x) =4+x^2
(8-(4+x^2)(2-x))/(2-x) =0
(8 - 8 + x^3 -2x^2 + 4x)/(2-x) =0
x(x^2-2x+4)/(2-x) =0
x(2-x)^2/(2-x)=0
x(2-x) =0
x=0 2-x = 0 или х = 2(не подходит так как мы приняли что хlt;0)
Если хgt;0 то IxI = x
8/(2+x) =4+x^2
(8-(4+x^2)(2+x))/(2+x) =0
(8 - 8 - x^3 -2x^2 - 4x)/(2+x) =0
x(x^2+2x+4)/(x+2) =0
x(x+2)^2/(2+x)=0
x(x+2) =0
x=0 x+2 = 0 либо х = -2(не подходит так как мы приняли что хgt;0)
Поэтому решением уравнения будет х=0
Проверка
8/(2+IxI) = 8/(2+0) = 4
4 + x^2 =4+ 0 =4
Ответ:0
Пошаговое объяснение:
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.