По кругу стоят 17 ненулевых чисел. Оказалось, что сумма любых 2-ух

По кругу стоят 17 ненулевых чисел. Оказалось, что сумма всех 2-ух примыкающих чисел положительна. Какое наивеличайшее количество чисел могут быть отрицательны?

Задать свой вопрос
1 ответ
Поскольку знаменито, что сумма 2-ух всех соседних чисел положительна, можно заключить, что для всех примыкающих числа не могут быть отрицательными сразу (т.е. или два примыкающих числа положительные, или одно из них положительное, а иное отрицательное).

Как следует, наибольшее число чисел, которые могут быть отрицательными 8.

Ответ: 8 чисел.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт