Упростим выражение (7 - х)(7 + х) + (х - 3)^2 и отыскать его значение при x = 3.5.
Составим метод решения задания
- откроем скобки в данном выражении;
- сгруппируем и приведем подобные слагаемые, используя управляло приведения сходственных слагаемых;
- найдем значение выражения при данном значении переменной х.
Упростим выражение (7 - x)(7 + x) + (x - 3)^2 и найдем его значение при x = 3.5
Следуем методу деяний откроем скобки. Для этого вспомним формулы сокращенного умножения: квадрат разности и разность квадратов, а также правило открытия скобок, перед которыми стоит знак плюс.
Разность квадратов 2-ух чисел одинакова произведению разности этих чисел и их суммы: (a b)(a + b) = a^2 b^2;
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное творение первого на 2-ое плюс квадрат второго числа: (a b)^2 = a^2 2ab + b^2;
Правило раскрытия скобок, перед которыми стоит символ плюс или не стоит никакого знака, таково: скобки вкупе с этим знаком спускаются, а знаки всех слагаемых в скобках сохраняются.
Раскрываем скобки:
(7 - x)(7 + x) + (x - 3)^2 = 7^2 x^2 + (x^2 2 * x * 3 + 3^2) = 49 x^2 + x^2 6x + 9 = - x^2 + x^2 6x + 49 + 9;
Сгруппируем и приведем сходственные слагаемые, используя управляло приведения сходственных слагаемых.
Чтобы сложить (привести) сходственные слагаемые, надобно сложить их коэффициенты и итог помножить на общую буквенную часть.
- x^2 + x^2 6x + 49 + 9 = - 6x + 58.
Найдем значение приобретенного выражения при x = 3.5.
- 6x + 58 = - 6 * 3.5 + 58 = - 21 + 58 = 37.
Ответ: - 6x + 58; при x = 3.5 принимает значение одинаковое 37.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.