отыскать tg^2a+ctg^2a, если tg(a)+ctg(a) = 9

отыскать tg^2a+ctg^2a, если tg(a)+ctg(a) = 9

Задать свой вопрос
1 ответ

Согласно условию задачки,  tg(a) + ctg(a) = 9.

Возведем обе доли данного соотношения во вторую ступень:

(tg(a) + ctg(a)) = 9.

Воспользуемся формулой квадрата суммы (a + b) = a + 2 * a * b + b и раскроем скобки в левой доли приобретенного выражения:

tg(a) + 2 * tg(a) * ctg(a) + ctg(a) = 81.

Используя знаменитое тригонометрическое тождество tg(a) * ctg(a) = 1, упростим полученное выражение:

tg(a) + 2 * 1 + ctg(a) = 81;

tg(a) + 2 + ctg(a) = 81;

tg(a) + ctg(a) = 81 - 2;

tg(a) + ctg(a) = 79.

Ответ: tg(a) + ctg(a) = 79.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт