Найдите сумму положительных корней уравнения х^3-5х^2-х+5=0 1) 7 3)5 2)6 4)4
Найдите сумму положительных корней уравнения х^3-5х^2-х+5=0 1) 7 3)5 2)6 4)4
Задать свой вопрос1. Дано уравнение:
- x + x^3 - 5 x^2 + 5 = 0;
преобразуем
- x + - 5 x^2 + x^3 - 1 + 5 + 1 = 0;
или
- x - 1 + - 5(x^2 - 1) + x^3 - 1 = 0;
- x - 1 + - 5 (x - 1) (x + 1) + (x - 1) (x^2 + x + 1^2) = 0;
2. Вынесем общий множитель -1 + x за скобки получим:
(x - 1) (- 5 t(x + 1) + x^2 + x + 1^2 - 1) = 0;
либо
(x - 1) (x^2 - 4 x - 5) = 0;
тогда:
x1 = 1;
и также получаем ур-ние:
x^2 - 4 x - 5 = 0;
3. Решаем с поддержкою дискриминанта:
a = 1;
b = - 4;
c = - 5;
тогда:
D = b^2 - 4 * a * c = (-4)^2 - 4 * (1) * (-5) = 36;
Т.к. D gt; 0, то уравнение имеет два корня.
x2 = 5;
x3 = -1;
4. Получаем конечный ответ для x^3 - 5*x^2 - x + 5 = 0:
x1 = 1;
x2 = 5;
x3 = -1;
5. Значит верный вариант: 3)5 так как 1 + 5 + (-1) =5.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.