Найдите сумму шестнадцати первых членов арифметической прогрессии: 8; 4; 0;
Найдите сумму шестнадцати первых членов арифметической прогрессии: 8; 4; 0;
Задать свой вопросНайдем, чему одинакова разность этой прогрессии.
В условии задачки сказано, что член данной последовательности под номером один равен 8, а член данной последовательности под номером два равен 4, как следует, разность данной арифметической прогрессии составляет:
d = а2 - а1 = 4 - 8 = -4.
Подставляя в формулу суммы первых n членов арифметической прогрессии Sn = (2 * a1 + d * (n - 1)) * n / 2 значения а1 = 4, d = -4, n = 16, получаем:
Sn = (2 * a1 + d * (16 - 1)) * 16 / 2 = (2 * a1 + d * 17) * 8 = (2 * 4 + (-4) * 17) * 8 = (8 - 68) * 8 = -60 * 8 = -480.
Ответ: сумма шестнадцати первых членов арифметической прогрессии равна -480.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.