Упростите выражение: cos2x-sin^2x / 2sin^2x-cos^2x
Упростите выражение: cos2x-sin^2x / 2sin^2x-cos^2x
Задать свой вопрос1. Для того что бы упростить данное тригонометрическое выражение нам пригодится познание главных тригонометрических формул. В этом тригонометрическом выражении мы будем использовать вот эту формулу:
cos^2a + sin^2a = 1;
2. Подставим формулу cos^2a + sin^2a = 1, в тригонометрического выражения, получаем:
(cos2x - sin^2x) / (2 * sin^2x - cos^2x) = (cos^2a - sin^2a - sin^2a) / (2 * sin^2x - cos^2x) =
= ( - 2 * sin^2a + cos^2a) / (2 * sin^2x - cos^2x) =
= - (2 * sin^2x - cos^2x) / (2 * sin^2x - cos^2x) = - 1.
Ответ: (cos2x - sin^2x) / (2 * sin^2x - cos^2x) = - 1.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.