(3/x+4 + 6x/x^2+x-12 - 1/x-3) : 8x-13/x^2-16
(3/x+4 + 6x/x^2+x-12 - 1/x-3) : 8x-13/x^2-16
Задать свой вопрос(3/(x + 4) + 6x/(x + x - 12) - 1/(x - 3)) : (8x - 13)/(x - 16).
Разложим многочлен x + x - 12 по формуле аx + bx + c = а(x - x1)(x - x2), где x1 и x2 - это корешки квадратного трехчлена.
x + x - 12 = (x - x1)(x - x2).
D = 1 + 48 = 49 (D = 7);
х1 = (-1 - 7)/2 = -8/2 = -4.
х2 = (-1 + 7)/2 = 6/2 = 3.
x + x - 12 = (х + 4)(х - 3).
Выражение приобретает вид (3/(x + 4) + 6x/(х + 4)(х - 3) - 1/(x - 3)) : (8x - 13)/(x - 16).
Приведем дроби в скобках к общему знаменателю.
(3(х - 3) + 6x - (х + 4))/(х + 4)(х - 3) : (8x - 13)/(x - 16).
(3х - 9 + 6x - х - 4)/(х + 4)(х - 3) : (8x - 13)/(x - 16).
(8х - 13)/(х + 4)(х - 3) : (8x - 13)/(x - 16).
Разложим бином (x - 16) на множители по формуле разности квадратов.
(8х - 13)/(х + 4)(х - 3) : (8x - 13)/(x - 4)(х + 4).
(8х - 13)/(х + 4)(х - 3) * (x - 4)(х + 4)/(8x - 13).
Исполняем сокращение одинаковых скобок.
Выходит (х - 4)/(x - 3).
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.