Найти производные 2 порядка: у=1/х * lgx y=sin2x+cos2x

Отыскать производные 2 порядка: у=1/х * lgx y=sin2x+cos2x

Задать свой вопрос
1 ответ

Найдём производную нашей данной функции: f(x) = (1 / x) + x.

Воспользовавшись главными формулами дифференцирования и правилами дифференцирования:

(x^n) = n * x^(n-1).

(x) = (1 / 2x).

(1 / x) = (-1 / x^2).

(с) = 0, где с const.

(с * u) = с * u, где с const.

(u v) = u v.

Таким образом, производная нашей данной функции будет последующая:

f(x) = ((1 / x) + x) = (1 / x) + (x) = (-1 / x^2) + (1 / 2x) = (1 / 2x) - (1 / x^2).

Ответ: Производная нашей данной функции будет одинакова f(x) = (1 / 2x) - (1 / x^2).

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт