Отыскать корешки уравнения принадлежащие отрезку [0;2] 1)sinx=0 2)cosx-1=0

Отыскать корешки уравнения принадлежащие отрезку [0;2] 1)sinx=0 2)cosx-1=0

Задать свой вопрос
1 ответ

Задание состоит из 2-ух частей, в каждой из которых требуется отыскать корни данного тригонометрического уравнения, принадлежащие отрезку [0; 2].

  1. Осмотрим уравнение sinx = 0. Как известно, это уравнение является простым тригонометрическим уравнением, решение которого можно оформить в виде: x = * n, n Z, Z множество целых чисел. По требованию задания, составим и решим (найдём целые значения n) неравенство условно n: 0 * n 2. Поделим все части этого двойного неравенства на . Тогда, получим: 0 n 2 / . Так как gt; 3, то 2 / lt; 1. Значит, имеем одно решение неравенства n = 0. Соответственно, одно решение данного уравнения: х = 0.
  2. Рассмотрим уравнение cosx 1 = 0.Перепишем его в виде cosx = 1. Как известно, это уравнение является простым тригонометрическим уравнением, решение которого можно оформить в виде: x = 2 * * n, n Z, Z огромное количество целых чисел. По требованию задания, составим и решим (найдём целые значения n) неравенство относительно n: 0 2 * * n 2. Поделим все части этого двойного неравенства на 2 * . Тогда, получим: 0 n 1 / . Поскольку gt; 3, то 1 / lt; 1. Означает, имеем одно решение неравенства n = 0. Соответственно, одно решение данного уравнения: х = 0.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт