Найдите наименьшее целое число из огромного количества значений функции f(x)=x в квадрате

Найдите меньшее целое число из огромного количества значений функции f(x)=x в квадрате +2х+18

Задать свой вопрос
1 ответ

Имеем функцию y = x^2 + 2 * x + 18.

Область определения, то есть возможные значения довода функции - любое число.

На 1-ый взгляд область значения функции - также любое число, но веская часть чисел из области значений исчезнет.

Преобразуем формулу функции - выделим квадрат суммы 2-ух чисел:

x^2 + 2 * x + 18 = x^2 + 2 * x * 1 + 1 + 17 = (x + 1)^2 + 17.

Получаем:

y = (x + 1)^2 + 17.

Получили сумму квадрата суммы и числа 17. Данная сумма взыскательно положительна, более того, минимальное значение функции - 17, при любом другом значении довода функция будет вырастать.

Ответ: 17.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт