Найдите значение b при котором ровная у= 6х+b дотрагивается параболы y=

Найдите значение b при котором ровная у= 6х+b дотрагивается параболы y= x2+8

Задать свой вопрос
1 ответ

Имеем параболу y = x^2 + 8.

Найдем значение b, при котором ровная y = 6 * x + b касается параболы.

Запишем уравнение касательной к графику функции в точке с абсциссой x0:

y = y(x0) * (x - x0) + y(x0);

В уравнении прямой коэффициент при переменной равен 6, а в уравнении касательной - y(x0). Приравняем их:

6 = y(x0);

6 = 2 * x0;

x0 = 3;

Найдем значение функции от x0:

y(x0) = 3 * 3 + 8 = 17;

Тогда уравнение прямой выглядит следующим образом:

y = 6 * (x - 3) + 17 = 6 * x -18 + 17 = 6 * x - 1;

b = -1.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт