Необходимо упаковать несколько журналов.Если их связать по два то остается излишним

Необходимо упаковать несколько журналов.Если их связать по два то остается излишним один журнальчик если по три то два журнала если по четыре то останется четыре журнала найди наименьшее число журналов которое необходимо упаковать

Задать свой вопрос
1 ответ

   В заключительном случае должно быть не четыре, а три журнальчика.

   1. Пусть имеется n журналов. Тогда:

  • n = 2k1 + 1;
  • n = 3k2 + 2;
  • n = 4k3 + 3.

   2. Прибавим единицу к обеим частям этих уравнений:

  • n + 1 = 2k1 + 1 + 1 = 2k1 + 2 = 2(k1 + 1);
  • n + 1 = 3k2 + 2 + 1 = 3k2 + 3 = 3(k2 + 1);
  • n + 1 = 4k3 + 3 + 1 = 4k3 + 4 = 4(k3 + 1).

   3. Из приобретенных уравнений следует, что n + 1 делится на 2, 3 и 4. Наименьшее естественное число, удовлетворяющее этому условию:

  • n + 1 = НОК(2, 3, 4) = 12, отсюда:
  • n = 12 - 1 = 11.

   Ответ: 11 журналов.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт