1 ответ
Яна Стома
- В задании дано тригонометрическое выражение arcsin(1/2) + arcsin((3) / 2), но требования нет. Анализ данного выражения указывает, что оно является суммой двух значений обратной тригонометрической функции у = arcsinх. До этого всего, следует особо отметить, что когда рассматриваются оборотные тригонометрические функции, то нужно учитывать, что оборотные тригонометрические функции многозначны. Поэтому, введены понятия их главных значений. Будем считать, что нужно отыскать сумму 2-ух основных значений обратной тригонометрической функции у = arcsinх.
- Напомним, что арксинус (y = arcsinx) это функция, оборотная к синусу (x = siny), имеющая область определения [1; 1] и множество значений [/2; /2]. Так как угол, синус которого равен 1/2, это /6 (радиан) и /6 [/2; /2], то arcsin(1/2) = /6. Аналогично, из-за того, что угол, синус которого равен ((3) / 2), это /3 (радиан) и /3 [/2; /2], то arcsin((3) / 2) = /3.
- Таким образом, arcsin(1/2) + arcsin((3) / 2) = /6 + /3 = ( + 2 * ) / 6 = (3 * ) / 6 = /2.
Ответ: arcsin(1/2) + arcsin((3) / 2) = /2.
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов