Cos x = 0,5 2 2cosx - 1 = sin x

Cos x = 0,5 2 2cosx - 1 = sin x

Задать свой вопрос
1 ответ

1) Корни уравнения вида cos(x) = a определяет формула:
x = arccos(a) +- 2 * * n, где n натуральное число. 

x = arccos(2/2) +- 2 * * n;

x =  /4 +- 2 * * n.

Ответ: x принадлежит /4 +- 2 * * n, где n естественное число. 

2) Обратившись к главному тригонометрическому тождеству, имеем:

sin^2(x) = 1 - cos^2(x).

Изначальное уравнение воспринимает форму:

-sin^2(x) = sin(x);

sin^2(x) + sin^(x) = 0.

sin(x) * (1 + sin(x)) = 0.

x1 = arcsin(0) +- 2 * * n;

x1 = 0 +- 2 * * n;

x2 = - +- 2 * * n.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт