1/10*12+1/12*14+1/14*16+.......+1/98*100

1/10*12+1/12*14+1/14*16+.......+1/98*100

Задать свой вопрос
1 ответ
  1. Данное арифметическое выражение 1 / (10 * 12) + 1 / (12 * 14) + 1 / (14 * 16) + ... + 1 / (98 * 100) обозначим через А. Вычислим значение выражения А, желая об этом в задании очевидного требования нет.
  2. Анализируя данное выражение, узнаём, что оно состоит из суммы 45 слагаемых. Каждое слагаемое представляет собой дробь, числитель которой равен 1, а знаменатель является творением 2-ух положительных чисел.
  3. Нетрудно заметить, что каждую дробь можно представить как разность 2-ух дробей, умноженную на 0,5. Вправду, (1/10 1/12) * 0,5 = ((1 * 12 1 * 10) / (10 * 12)) * 0,5 = (2 / (10 * 12)) * 0,5 = 1 / (10 * 12); (1/12 1/14) * 0,5 = ((1 * 14 1 * 12) / (12 * 14)) * 0,5 = (2 / (12 * 14)) * 0,5 = 1 / (12 * 14); (1/14 1/16) * 0,5 = ((1 * 16 1 * 14) / (14 * 16)) * 0,5 = (2 / (14 * 16)) * 0,5 = 1 / (14 * 16) и (1/98 1/100) * 0,5 = ((1 * 100 1 * 98) / (98 * 100)) * 0,5 = (2 / (98 * 100)) * 0,5 = 1 / (98 * 100).
  4. Имеем: А = (1/10 1/12) * 0,5 + (1/12 1/14) * 0,5 + (1/14 1/16) * 0,5 + + (1/98 1/100) * 0,5. Вынесем множитель 0,5 за скобки. Тогда, получим: А = (1/10 1/12 + 1/12 1/14 + 1/14 1/16 + + 1/98 1/100) * 0,5 = (1/10 1/100) * 0,5 = ((100 10) / (10 * 100)) * 0,5 = (90/1000) * 0,5 = 45/1000 = 0,045.

Ответ: 0,045.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт