1 ответ

Решение начального уравнения представляет из себя совокупа решений: cos(4x) + 1 = 0 и sin(2x) - 1 = 0. Решим их:

sin(2x) = 1. 

Корни уравнения вида sin(x) = a определяет формула:
x = arcsin(a) +- 2 * * n, где n естественное число. 

2x = arcsin(1) +- 2 * * n;

2x = /2 +- 2 * * n;

x1 = /4 +- * n.

cos(4x) = -1;

4x = arccos(-1) +- 2 * * n;

4x =  +- 2 * * n;

x2 = /4 +-  /2 * n.

Ответ: x принадлежит  +- 2 * * n; /4 +-  /2 * n, где n естественное число. 

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт