В группе 10 малышей. Сколькими методами их можно поставить в ряд

В группе 10 малышей. Сколькими методами их можно поставить в ряд парами?

Задать свой вопрос
1 ответ

   1. Количество пар, которые можно составить из 10 деток, одинаково числу сочетаний из 10 по 2:

  • n1 = C(10, 2);
  • n1 = 10!/(2! * 8!) = (10 * 9)/(1 * 2) = 5 * 9 = 45.

   2. В каждой паре каждый ребенок может стоять слева либо справа - два варианта:

      n2 = 2.

   3. Число перестановок для 5 пар деток в ряду равно:

  • n3 = A(5);
  • n3 = 5! = 1 * 2 * 3 * 4 * 5 = 120.

   4. Перемножив все эти значения, получим количество всех вероятных методов:

  • N = n1 * n2 * n3;
  • N = 45 * 2 * 120 = 10 800.

   Ответ: 10 800 методами.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт