12a^3x-36a^2bx+27ab^2x 2a^2b^3-28ab^2+98b (a-2b)^3+8b^3 27-(x-2)^3 (m+1)^3+64

12a^3x-36a^2bx+27ab^2x 2a^2b^3-28ab^2+98b (a-2b)^3+8b^3 27-(x-2)^3 (m+1)^3+64

Задать свой вопрос
1 ответ

Разложим на множители.

а) Вынесем в выражении множитель 3ax:

12a3x - 36a2bx + 27ab2x = 3ax(4a2 - 12ab + 9b2) = 3ax(2a - 3b)2.

b) Общий множитель 2b за скобки:

2a2b3 - 28ab2 + 98b = 2b(a2b2 14ab + 49) = 2b(ab - 7)2.

с) Используем формулу суммы кубов двучлена:

(a 2b)3 + 8b3 = (a 2b)3 + (2b)3 = (a 2b + 2b)((a 2b)2  2b(a 2b) + 4b2) =

= a(a2  4аb + 4b2  4аb + 4b2 + 4b2) = a(a2  8аb + 12b2) = a((a2  2 * 4аb + 16b2) 16b2 + 12b2) =

= a((a 4b)2  4b2) = a(a 4b 2b)(a 4b + 2b) = a(a 6b)(a 2b).

d) Используем формулу разности кубов бинома:

 27 (x 2)3 = 33  (x 2)3 = (3 (x 2))(9 + 3(х 2) + (x 2)2) = (3 x + 2)(9 + 3х 6 + x2  4х + 4) = (5 x)(x2  х + 7).

Найдем дискриминант уравнения: x2  х + 7 = 0, D = 27 lt;0, потому у уравнения нет корней.

Ответ: (5 x)(x2  х + 7).

e) Используем формулу суммы кубов двучлена:

(m + 1) + 64 = (m + 1) + 43 = (m + 1 + 4)((m + 1)2  4(m + 1) + 16) =

= (m + 5)(m2 + 2m + 1 4m 4 + 16) = (m + 5)(m2  2m + 13).

В уравнении m2  2m + 13 = 0 дискриминант D = 48 lt; 0, потому нет, потому разложение на множители конечное.

Ответ: (m + 5)(m2  2m + 13).

 

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт