Решите уравнение : y3-3y2=12-4y

Решите уравнение : y3-3y2=12-4y

Задать свой вопрос
1 ответ

Чтоб решить данное биквадратное уравнение, сначала перенесём всё из правой доли уравнения в левую с обратными знаками:

y^3 - 3y^2 = 12 - 4y,

y^3 - 3y^2 + 4y - 12 = 0. Сейчас распределим члены уравнения на две группы:

(y^3 - 3y^2) + (4y - 12) = 0. Вынесем за скобки общие множители:

y^2 * (y - 3) + 4 * (y - 3) = 0. Отсюда получаем:

(y - 3) * (y^2 + 4) = 0. Уравнение будет одинаково 0, когда желая бы один из множителей равен 0:

y - 3 = 0 либо y^2 + 4 = 0. У нас вышли два уравнения. Чтоб решить их, перенесём обыкновенные числа в правую часть уравнения:

y = 3 либо y^2 = -4. Во втором уравнении корней не будет, так как число в квадрате не может быть отрицательным. Поэтому в ответе укажем один корень.

Ответ: 3.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт