В правильной треугольной пирамиде боковые ребра наклонены к основанию под углом
В правильной треугольной пирамиде боковые ребра наклонены к основанию под углом 60 градусов, длина бокового ребра одинакова 8. Найдите V пирамиды
Задать свой вопросДля решения осмотрим рисунок (https://bit.ly/2YHvpuA).
В прямоугольном треугольнике ДВО определим длины катетов ВО и ДО.
Cos60 = BO / ДВ.
ВО = ДВ * Cos60 = 8 * 1 / 2 = 4 см.
ДО2 = ДВ2 ВО2 = 64 16 = 48.
ДО = 4 * 3 см.
Медианы в равностороннем треугольнике АВС в точке О делятся в отношении 2 / 1, тогда ОН = ВО / 2 = 4 / 2 = 2 см.
ВН = ВО + ОН = 4 * 2 = 6 см.
Вышина ВН равностороннего треугольника равна: ВН = АС * 3 / 2, тогда:
АС = 2 * ВН / 3 = 2 * 6 / 3 = 12 / 3 = 4 * 3 см.
Площадь основания пирамиды равна: Sосн = АС * ВН / 2 = 4 * 3 * 6 / 2 = 12 * 3 см.
Объем пирамиды тогда равен: Vпир = Sосн * ДО / 3 = 12 * 3 * 4 * 3 / 3 = 48 см3.
Ответ: Объем пирамиды равен 48 см3.
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.