угол A в параллелограмме ABCD =30 градусов,биссектриса угла A пересекает сторону
угол A в параллелограмме ABCD =30 градусов,биссектриса угла A пересекает сторону BC в точке E так чтоBE=4 и EC=2.Найдите площадь этого параллелограмма
Задать свой вопросДля решения осмотрим набросок (https://bit.ly/2QfCqha).
Так как, по условию, АЕ биссектриса угла А, то угол ВАЕ = ДАЕ = 150. Угол ВЕВ = ДАЕ, как накрест лежащие углы при скрещении параллельных прямых АД и ВС секущей АЕ. Тогда и угол ВАЕ = ВЕА, а треугольник АВЕ равносторонний, АВ = ВЕ = 4 см.
Сторона АД = ВС = ВЕ + СЕ = 4 + 2 = 6 см.
Площадь параллелограмма равна произведению его сторон на синус угла меж ними.
S = АВ * АД * Sin300 = 4 * 6 * 1 / 2 = 12 cм2.
Ответ: Площадь параллелограмма равна 12 см2.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.