Помогите решить два тригонометрических уравнения1.
Помогите решить два тригонометрических уравнения
1. sinx(3sin(2x)sin^3(x)+12sin(2x)sin(x)-16cos(x))+2sin(4x)=0
2. 3cos(4x)+2cos(2x)(10cos^4(x)+3cos^2(x)+sin^2(x))+3=0
1 ответ
Метнева
Камилла
Функции двойного угла:
sin 2a = 2sin a*cos a;
cos 2a = cos^2 a - sin^2 a = 1 - 2sin^2 a = 2cos^2 a - 1
1) sin x*(6sin x*cos x*sin^3 x + 24sin x*cos x*sin x - 16cos x) +
+ 4sin 2x*cos 2x = 0
2sin x*cos x*(3sin^4 x + 12sin^2 x - 8) + 8sin x*cos x*(1 - 2sin^2 x)= 0
sin 2x*(3sin^4 x + 12sin^2 x - 8 + 4 - 8sin^2 x) = 0
а) sin 2x = 0; 2x = pi*k;
x1 = pi/2*k - ЭТО РЕШЕНИЕ.
б) 3sin^4 x + 4sin^2 x - 4 = 0
Биквадратное уравнение, решаем, как квадратное.
D/4 = 2^2 - 3(-4) = 4 + 12 = 16 = 4^2
sin^2 x = (-2 - 4)/3 lt; 0 - решений нет.
sin^2 x = (-2 + 4)/3 = 2/3
sin x = -(2/3)
x2 = (-1)^n*arcsin(-(2/3)) + pi*n - ЭТО РЕШЕНИЕ.
sin x = (2/3)
x3 = (-1)^m*arcsin((2/3)) + pi*m - ЭТО РЕШЕНИЕ.
2) 3(2cos^2(2x) - 1) + 2cos(2x)*(10cos^4 x + 3cos^2 x + 1 - cos^2 x) + 3 = 0
6cos^2(2x) - 3 + 2cos 2x*(10cos^4 x + 2cos^2 x + 1) + 3 = 0
2cos 2x*(3cos 2x + 10cos^4 x + 2cos^2 x + 1) = 0
а) cos 2x = 0; 2x = pi/2 + pi*k
x1 = pi/4 + pi/2*k - ЭТО РЕШЕНИЕ
б) 3(2cos^2 x - 1) + 10cos^4 x + 2cos^2 x + 1 = 0
10cos^4 x + 2cos^2 x + 6cos^2 x - 3 + 1 = 0
10cos^4 x + 8cos^2 x - 2 = 0
Вновь биквадратное уравнение
D/4 = 4^2 - 10(-2) = 16 + 20 = 36 = 6^2
cos^2 x = (-4 - 6)/10 lt; 0 - не подходит
cos^2 x = (-4 + 6)/10 = 2/10 = 1/5
cos x = -(1/5) = -5/5
x2 = +-arccos(-5/5) + 2pi*n - ЭТО РЕШЕНИЕ
cos x = (1/5) = 5/5
x3 = +-arccos(5/5) + 2pi*m - ЭТО РЕШЕНИЕ
sin 2a = 2sin a*cos a;
cos 2a = cos^2 a - sin^2 a = 1 - 2sin^2 a = 2cos^2 a - 1
1) sin x*(6sin x*cos x*sin^3 x + 24sin x*cos x*sin x - 16cos x) +
+ 4sin 2x*cos 2x = 0
2sin x*cos x*(3sin^4 x + 12sin^2 x - 8) + 8sin x*cos x*(1 - 2sin^2 x)= 0
sin 2x*(3sin^4 x + 12sin^2 x - 8 + 4 - 8sin^2 x) = 0
а) sin 2x = 0; 2x = pi*k;
x1 = pi/2*k - ЭТО РЕШЕНИЕ.
б) 3sin^4 x + 4sin^2 x - 4 = 0
Биквадратное уравнение, решаем, как квадратное.
D/4 = 2^2 - 3(-4) = 4 + 12 = 16 = 4^2
sin^2 x = (-2 - 4)/3 lt; 0 - решений нет.
sin^2 x = (-2 + 4)/3 = 2/3
sin x = -(2/3)
x2 = (-1)^n*arcsin(-(2/3)) + pi*n - ЭТО РЕШЕНИЕ.
sin x = (2/3)
x3 = (-1)^m*arcsin((2/3)) + pi*m - ЭТО РЕШЕНИЕ.
2) 3(2cos^2(2x) - 1) + 2cos(2x)*(10cos^4 x + 3cos^2 x + 1 - cos^2 x) + 3 = 0
6cos^2(2x) - 3 + 2cos 2x*(10cos^4 x + 2cos^2 x + 1) + 3 = 0
2cos 2x*(3cos 2x + 10cos^4 x + 2cos^2 x + 1) = 0
а) cos 2x = 0; 2x = pi/2 + pi*k
x1 = pi/4 + pi/2*k - ЭТО РЕШЕНИЕ
б) 3(2cos^2 x - 1) + 10cos^4 x + 2cos^2 x + 1 = 0
10cos^4 x + 2cos^2 x + 6cos^2 x - 3 + 1 = 0
10cos^4 x + 8cos^2 x - 2 = 0
Вновь биквадратное уравнение
D/4 = 4^2 - 10(-2) = 16 + 20 = 36 = 6^2
cos^2 x = (-4 - 6)/10 lt; 0 - не подходит
cos^2 x = (-4 + 6)/10 = 2/10 = 1/5
cos x = -(1/5) = -5/5
x2 = +-arccos(-5/5) + 2pi*n - ЭТО РЕШЕНИЕ
cos x = (1/5) = 5/5
x3 = +-arccos(5/5) + 2pi*m - ЭТО РЕШЕНИЕ
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Облако тегов