Помогите срочно надобно пж "выписано несколько последовательных членов арифметическй прогрессии -57
Помогите срочно надо пж quot;выписано несколько поочередных членов арифметическй прогрессии -57 -44 -31 найдите 1-ый длительный член этой прогрессииquot;
Задать свой вопрос1 ответ
Колька Ширнюк
По-видимому речь идет о первом положительном члене прогрессии.
Будем считать -57 первым членом a1 данной арифметической прогрессии, -44 вторым членом а2 и -31 третьим членом а3.
Для двух поочередных членов арифметической прогрессии обязано выполнятся соотношение
an+1 - an = d, где d -разность арифметической прогрессии. Вычислим значение d для арифметической прогрессии из условия задачки
d = a2 - a1 = -44 - (-57) = -44 + 57 = 13
Проверяем, удовлетворяют ли а3 и а2 данному условию
а3 - а2 = -31 - (-44) = -31 + 44 = 13
Итак, данная последовательность вправду является арифметической прогрессией с разностью равной 13.
n-й член арифметической прогрессии рассчитывается по формуле аn = a1 + (n - 1)*d. В данном случае
аn = -57 + (n - 1)*13
Для того, чтоб определить, когда данная последовательность станет положительной, нужно решить неравенство
-57 + (n - 1)*13 gt; 0
(n - 1)*13 gt; 57
n-1 gt; 57/13
n gt; 57/13 + 1 = 70/13 = 5 5/13
Меньшее целое число, для которого производится данное неравенство n=6
Итак, при n=6 данная арифметическая прогрессия становится положительной
Находим а6
а6 = -57 + (6 - 1)*13 = -57 + 5*13 = 8
Ответ: первый длительный член этой прогрессии равен 8
Будем считать -57 первым членом a1 данной арифметической прогрессии, -44 вторым членом а2 и -31 третьим членом а3.
Для двух поочередных членов арифметической прогрессии обязано выполнятся соотношение
an+1 - an = d, где d -разность арифметической прогрессии. Вычислим значение d для арифметической прогрессии из условия задачки
d = a2 - a1 = -44 - (-57) = -44 + 57 = 13
Проверяем, удовлетворяют ли а3 и а2 данному условию
а3 - а2 = -31 - (-44) = -31 + 44 = 13
Итак, данная последовательность вправду является арифметической прогрессией с разностью равной 13.
n-й член арифметической прогрессии рассчитывается по формуле аn = a1 + (n - 1)*d. В данном случае
аn = -57 + (n - 1)*13
Для того, чтоб определить, когда данная последовательность станет положительной, нужно решить неравенство
-57 + (n - 1)*13 gt; 0
(n - 1)*13 gt; 57
n-1 gt; 57/13
n gt; 57/13 + 1 = 70/13 = 5 5/13
Меньшее целое число, для которого производится данное неравенство n=6
Итак, при n=6 данная арифметическая прогрессия становится положительной
Находим а6
а6 = -57 + (6 - 1)*13 = -57 + 5*13 = 8
Ответ: первый длительный член этой прогрессии равен 8
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
Облако тегов