В 5-ом классе 30 воспитанников.Во время диктанта один из учеников сделал
В 5-ом классе 30 воспитанников.Во время диктанта один из воспитанников сделал 12 ошибок, а остальные - меньше. Докажите, что в классе по последней мере три воспитанника сделали однообразное число ошибок
Задать свой вопросДанная задачка просто решается, если пристально читать ее условия.В классе 30 воспитанников и всего один из их сделал 12 ошибок, остальные меньше. То есть у нас есть 29 человек, которые сделали ошибок меньше чем 12, вычислим какое величайшее количество ошибок мог сделать каждый воспитанник:
1. 12 - 1 = 11 ошибок - это величайшее значение, которое мог сделать воспитанник.
Пусть каждую из этих ошибок от 0 до 11 допустило не более двух человек, тогда:
2. 12 х 2 = 24 человек в классе.
Но у нас в классе 30 человек. Из полученного противоречия мы можем сделать вывод, что в классе есть как минимум 3 человека которые допустили одинаковое кол-во ошибок.
Что и требовалось доказать.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.